
Journal of Statistical Physics, Vol. 73, Nos. 5/6, 1993 

Multiscale Representation of Generating and 
Correlation Functions for Some Models of 
Statistical Mechanics and Quantum Field Theory 

M i c h a e l  O ' C a r r o l l  I 

Received December 12, 1992 

We consider models of statistical mechanics and quantum field theory (in the 
Euclidean formulation) which are treated using renormalization group methods 
and where the action is a small perturbation of a quadratic action. We obtain 
multiscale formulas for the generating and correlation functions after n renor- 
realization group transformations which bring out the relation with the nth 
effective action. We derive and compare the formulas for different RGs. The 
formulas for correlation functions involve (1) two propagators which are deter- 
mined by a sequence of approximate wave function renormalization constants 
and renormalization group operators associated with the decomposition into 
scales of the quadratic form and (2) field derivatives of the nth effective action. 
For the case of the block field "b-function" RG the formulas are especially 
simple and for asymptotic free theories only the derivatives at zero field are 
needed; the formulas have been previously used directly to obtain bounds on 
correlation functions using information obtained from the analysis of effective 
actions. The simplicity can be traced to an "orthogonality-of-scales" property 
which follows from an implicit wavelet structure. Other commonly used RGs do 
not have the "orthogonality of scales" property. 

KEY WORDS:  Renormalization group; multiscale analysis; correlation 
functions; orthogonality of scales; wavelets. 

1. I N T R O D U C T I O N  A N D  RESULTS 

Here we consider some statistical mechanics and quantum field theory 
boson and fermi models (in the Euclidean formulation) that are analyzed 
using renormalization group (RG) methods. We treat models whose 
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946 O'Carroll  

actions are small perturbations of quadratic actions (see, for example, refs. 
1-8). In an RG treatment a sequence of effective actions is generated by 
successive applications of the renormalization group transformation 
(RGT). We consider the cases where the RG or the RGT originates from 
a specified decomposition of the inverse of the operator associated with the 
quadratic part of the action. In the case of the block RG this decomposi- 
tion is generated by the block RGT. (1'7'15) These decompositions are 
referred to as multiscale decompositions. 

In this paper we establish identities for the generating function of the 
models after n RGT and by differentiating the logarithm with respect to an 
external field we obtain a representation for the truncated correlation 
functions. These representations are expressed in terms of the nth effective 
interaction and compared for different RGs. The point is that sufficiently 
good control of the effective interaction allows control of the correlation 
functions directly using these representations. The usual treatment of 
correlation functions is an analysis separate from that of the effective 
actions (see, for example, refs. 9-11). For the case of some IRAF lattice 
models, correlation functions were analyzed from this point of view in 
refs. 9-11. For the case of continuum quantum field theory analogous 
formulas can be used to obtain the short-distance behavior of correlation 
functions. 

In our derivation we have included at each renormalization group 
step an additive field-independent or vacuum renormalization and also a 
wavefunction renormalization, thus generating a sequence of approximate 
wavefunction renormalization constants (denoted {Zj}). The formulas for 
the c.f. have the general structure of a resummed perturbation theory. For 
the two-point function two propagators Pn and G, appear (see below): 
Pn by itself and two Gn's as legs of a bubble, For the k-point truncated 
function, k Gn's appear as legs of a bubble. 

We describe in more detail the propagators and bubbles. The 
propagators are determined by the sequence of approximate wavefunction 
renormalization constants and explicity known renormalization group 
operators associated with the decomposition into scales of the quadratic 
form. The bubble is determined by expectations (with respect to the nth 
effective action) of field derivations of the nth effective action. 

Comparing the formulas for different RGs, we find that for the block 
spin "6-function" RG the propagators have a remarkably simple form due 
to an "orthogonality-between-scales" property. This property can be traced 
to an implicit wavelet structure associated with this RG (13~ which is not 
present in other commonly used RGs. 

In the case of some infrared asymptotic free (IRAF) models as 
considered in refs. 1 and 2 and in the thermodynamic and n ~ ov limits the 
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formulas are used directly in refs. 14 and 16 to obtain bounds on correla- 
tion functions. The only information needed is obtained from the analysis 
of the effective actions in ref. 1. Furthermore, the long-range behavior is 
obtained and good bounds are obtained for the falloff of the, ~ubdominant 
contribution. 

In this case and for the k-point c.f. we find the rather surprising result 
that the bubble involves only the n ~ oo limit of the k th  derivative of the 
nth effective action at zero field and there is no expectation integral. Here 
we have a Gaussian fixed point and quite reasonably the correlation func- 
tions are determined by the local rate of convergence of the effective action 
to the fixed point. Large field contributions have already been taken into 
account as there are large fluctuation field contributions to the sequence 
of approximate wavefunction renormalization constants and to the nth 
effective action. 

For  simplicity of presentation we give the results for unit lattice scalar 
field models. The structure of the formulas is quite general and we explain 
how they can be generalized to Bose and Fermi models which may be 
continuous. 

The partition function ~ of our models is taken to be, with z = z(0), 

~(J) = f e (o,J~)/2 e(J,r e -  v(o) D~b (1) 

where D ( J = H x d ~ ( x ) ,  V(-~b)= V(q~), and x runs over points of a finite 
subset of the lattice Z a. We take 1/2(~b, &b) as our unperturbed action, 
where A is the negative of the Laplacian. 

The effect of some renormalization is included in our formulas. In fact 
without renormalization the formulas are simple and are analogous to the 
formula obtained from #.(J) by completing the square, i.e., 

z(J) = e (:'a I J)/2 f e (~,a~)))/2 e -  v(~+a i j) Dq$ 

and for the two-point function 

(~(XI) ~(X2) ) ~-z~--l(Xl, X2)--A-1(X1, Yl) 

X A --l(y2, X2) (2) 

the difference being that V is replaced by the effective action and in the 
integrals A is replaced by the effective quadratic action. The renormaliza- 
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tion we consider explicitly after each RGT is the separation of a constant 
term from the new action and most importantly a renormalization of the 
quadratic of the action obtained by separating out the quadratic term 
proportional to the unperturbed effective action. This term is included with 
the old quadratic part and plays the role of the unperturbed action of the 
next step. 

The complexity of the formulas depends on the RG employed. The 
orthogonality between scales of the decomposition results in the simplest 
formulas. This orthogonality is only present in the "a-function" block 
RGs which have an implicit wavelet structure. (12 ~4) The exponential block 
RG and the RG obtained from commonly used decompositions of 
a covariance ~3'4'6'15) do not have the "orthogonality-between-scales" 
property. As the level of complexity of the formulas for the c.f. is the same 
in these two cases, we only treat the general decomposition case explicitly. 

For the decomposition of the inverse of the operator associated with 
the unperturbed action we write 

n - - 1  
A -1=  ~ G + A :  1 (3) 

j = O  

We refer to this as a general decomposition. For example, 

n-~ i~J+' f )  (A- I )A(p )=  y' e-=~'(P) da+ e ='(P) da=#(p) -1 (4) 
j = 0  ~J 

where /x is the Fourier transform and # (p )=  a 3Zv= 1 ( 2 -  2 cos Pv) and 
O{k+ j > O{k > 0~0 = O. 

For the case of the "a-function" block RG we use the canonically- 
scaled block averaging operator 

CO(x)=LCd-2)/2L ~ ~ (b(Lx+y) (5) 
L/2 <~ y= < L/2 

J 
and write CJ= ~ C ' C ,  Co=I,  a n d A n = ( C , 3  I C*) 1) ~ .TheRGTis  
defined by 

e-RU(q')=f b(tll--CO)e uc(r162 a(O-CO)=__Ha(~9(x)-C(b(x)) 

and the exponential block RGT is defined by 

e-RU(q')=fe ~l~'-c~L~e -U~) D(~/f 

x 

(6) 

e -aqq' cr D~b (7) 
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The decomposition of A-  1 generated by the "6-function" block RG is 
n - - 1  

1= Z ( -lc? jcJ  CT+I J+ICJ+IJ-1)+ -lC*.A.C. 
j = 0  

n - 1  

- E (s) 
.i = 0 

which is the a -~ oo singular limit of the exponential block RG decomposi- 
tion. What is special about the above decomposition is that A ~/2rjA 1/2 and 
j1 /2j~- , j  ~/2 are commuting orthogonal projections. This implies FjAPk = 
6~kF~. Another property satisfied by the decomposition is M,  A F j = 0  for 
j = 0 ,  1 , . . . , n - i ,  where M,=-zI-~C*A,,. These properties, related to the 
existence and orthogonality of wavelets, are used to simplify the formulas 
for the generating and correlation functions. It is shown in refs. 13 and 14 
that f j =  J l/ZMju, Cu=O, is an eigenfunction of zj1/2FjA 1/2, and that 
h~=A1/2M, v is an eigenfunction of J~ /2J~lJ  1/2 and that these functions 
have an interpretation in terms of lattice wavelets (see also ref. 12). 

The above decomposition can also be written 
n - - I  

A ~= Z M i F j M * + M , ~ 1 M ,  * (9) 
j = 0  

where F i -  zl/1 _ A j- 1C'A j+ ~ CAj  ~ is called the j t h  fluctuation covariance 
and where M k =  - 1  , J CkAk is called the kth minimizer, since 
inf~.c~= ~ �89 (~b, Aq~)=1 = 

We now give our identities for the case of the "6-function" and the 
case of a general decomposition. After n RGTs we obtain 

n - - I  

x f e-Zf -'(O'AjO)/2- V.(M.~+,9.J)D(~ (10) 

For the "6-function" RG, Mk d i , = CkAk and for the general decomposi- 
tion, M k = L  Also, dp.jOT)=6(Crl)Drt for the "cS-function" RG and 
d/~j(r/) = Dr/for the general decomposition. V,(Mnqk) is defined inductively 
by first defining Wn+ l(Mn+l~b) by 

e W"+l(Mn+'Co=fe Z;I(O'Zinq)/2e--Vn(M"*'~+M"rl)d#n(r/) 

and then writing 

Cn W,(M,(b) = W,(O) + ~ ((a, A,(b ) + V,(M,~) 
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such that we separate a field-independent term and a term proportional to 
the unperturbed action after n RGTs. The specific form of the operators 
depends on the RG and will be given below. Zk is related to the cj by, with 
Z0 = 1, 

Z~-t = 1 + c 1 +  -.- +c~, k~>l 

The Zk are called approximate wavefunction renormalization constants. 
Pk and Gk are propagators which can be expressed explicitly in 

terms of operators occurring in the decomposition of A -~. For the 
"6-function" RG 

_, _ "~ , '  ( Z , ,  - Z i )  ~ 
P,,=ZnA /, Fi (11) 

j = o Zn 
n - - I  

G , = Z , A - ' -  ~, ( Z , - Z j ) F j  (12) 
j =  0 

P, and G, are especially simple and not mix scales. The asymptotic forms 
of P~ and G, are determined by the behavior of the sequence {Zj}. 
F-or-exarnple~ qf '  we' have ~t" bound of  the type IZ~-  Zjl < L -~j, e >0,  
typical of asymptotic free models (except r (see ref. 13) and since 
IFj(x ,y) l<o(1)L j(a-2) e x p ( - U I x - y l ) ,  then ( P n - Z . A  l)(x,y) and 
( G ~ - Z . A  1)(x,y) are bounded by c t ( l +  I x - y l )  d 2+~, where we have 
used the bound 

s L _ r J e x p _ ( L _ J l x _ y l ) <  c 1 
j_o (1 + I x - y l )  ~ 

Thus the sums have faster decay than A 1. 
For the case of a general decomposition 

n 1 

= ZnAnd n IA n P,, ~_, (ZkAkF~Ak ck+,Dt+,A~+,D,+, )+ * - 
j = O  

G,, = D,, + Z n A  n IA n 

where A o = / ,  Do = 0, and 

A.~=(I  O) ~ ( I+Rj)  
j = 0  

= (0 I) lq ( I+  R,) 
j = 0  

(13) 

(14) 
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R is the 2 x 2 block operator given by 

e n  ~ , �9 �9 

Zn F+ 

To understand the behavior of Pn and G., approximate Am and Dm by 
the linear terms in Rk and approximate Rj by 

to get 

m - - 1  I m I 

which upon substituting in Eqs. (13) and (14) gives 

n - - 1  

j = O  

and 

n - - I .  

j = 0  

Comparing with the decomposition of A -I of Eq. (3), assuming the 
subdominance of the remainders and convergence of {Z~} to Z, then P~ 
and G~ behave like ZA-I asymptotically. 

In the case of an orthogonal decomposition, for example, F ]  F ,  ~ = 
6.,~F~ 2 and P~ A~ =0, m <n, then only the off-diagonal terms occur in 
R,~ and only linear terms in Rj occur in Am and Din, since RkRt(o t) =0,  and 
the P.  and G. simplify to the G. of the "6-function" RG. One way to 
realize an orthogonal: decompos!tion+of the convariance is to use disjoint 
characteristic functions in the Fourier transform of A - l, but this is difficult 
to control due to the lack of exponential or good polynomial decay in 
position space. 

We now turn to a derivation of a representation for correlation 
functions. From (10), after expanding V.(M.On + GnJ) as 

V~CMnq3+GJ)= D'+,],...v H G.(y,,xi) J(x,) 
I = 0  " i = 1  
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where we have set 

D t ..y, Vn(M,,r = ~V,(  Z = M,r OZ(y~) 
Y I  

we can write the k-point truncated correlation function as 

r 

~- 8 k In x(J)/63J(xl)... OJ(Xk)lS= o 

(01 I =8k2P,(xl, x2)-- ~ ,  ( - - 1 ) - '  D~I,:IV,(M,O) G~t(Y,~.X,,) 
7z= tl i}i=l i Vn 

(15) 

where 7r={Ii} is the set of partitions of {1,2,...,k} and . ) r  is the Vn 

truncated expectation with probability measure 

N 1 e x p [ -  V.(M.r 1 1 - ~z .  (r J . r  D0 

and we have set 

I1il 

Glt'l(y,g, x,~)= H G~(u;, vj) 

for u s c Xz, and vi c YIg. For example, the two-point function is 

(~b(xl) r ) = Pn(xl, x 2 ) -  G,(xl, y l ) (  D2yly2 V,(M,O ) 

- Dyl V.(M.r Dy2 V.(M.r ) W. G.(y2, x2) (16) 

which can be compared with Eq. (2). 
If we are considering IRAF models it is more convenient to separate 

out the part of V,(Mnr + GnJ) which is r independent, writing 

V,,(M,O+GnJ) = D'yi...y,V,(O) [ i  G,,(Yi, Xi)J(xi) 
/ = 0  i ~ l  

+ ~ [DlyI-'y,V"(M~(r V€ 
/ = 0  

l 

X I-I G.(yi, Xi) J(xi) 
i = 1  
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In this case 

/ ~ l  / T k ~b(x,) -=6k2P,,(xl, x2)-D~,...y-~V,,(O) H G,,(yi, x,)+Rk,, (17) 
i i=1 

where Rkn is given by the second term in (15) with 

D I'*1 V,(M,(~)--D t'l V,(O) 
Y l  i Y l  i 

replacing 

D J',~ V.(M.(~) 
Y l  i 

The reason that (17) is preferred is that the numerator of the integrand of 
Rk, is field dependent and R, is expected to vanish in the thermodynamic 
and n ~ oo limit since it represents roughly contributions from an interval 
of momentum [0, L - " ]  or [0, a , ]  where a,--+0 as n--+ 00. (14'18) For the 
"6-function" RGT the vanishing of Rk, in this limit is proved in ref. 19 
using a small-large field analysis. In this limit and for k = 2 the limit of the 
first term of P,  gives the dominant long-range behavior of ZA-1, where 
Z - l i m , ~ o o  Zn and the rest of P ,  and the second term of (17) are shown 
to fall off faster than A-  1. 

The proof of these results for the &b model in d ~> 3 can be found in 
refs. 14, 16, and 19, but as the proof is so transparent, let us sketch it here. 
From Eq. (17) we see that we only need a bound on Z , - Z j  and 

D ~  v.(o) - o2V.(x,, = M.~  = 0 ) / ~ Z . ( y l )  ~z,,(y2) 

These bounds are readily obtained from the analysis of the effective actions 
in ref. 13. From ref. 1, IZ, - Zfl < ca j, 0 < fi < 1, so that the sum in P,  of 
Eq. (11) decays faster than A -1. Also from ref. 1, V,,(M, r is analytic in a 
neighborhood of zero and the quadratic part is given by the irrelevant term 
�89162 S, O0M,r where we write everything on the unit lattice. Thus 
D2y2Vn(O)=(3*O*S, 3c~)(yl,Y2). From the iteration of the bounds of 
Section 6 of ref. 1 the kernel of Sn has the bound 

[S,,(yl,Y2)l<c/(l+lyl-y2[) a-2+~, e > 0  

Also Oc3G~(x, y) has the bound c/(1 + Ix-yl)d, so that the second term of 
Eq. (17) is bounded by 

ft .  a,a,so aaG.)(x,, x2)l 

Z (1 + Ixl--Yll)-a(1 + lY,-Y21) {a-2+')( 1 + ly~-xd) d 
Y l , Y 2  

<~c/(l+lxa--x2]) a-2+~', e ' > 0  

822/73/5-6-10  
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i.e., it decays faster than A-  i. Roughly speaking, in momentum for small 
Ipl the bound is 1/]pl 2-~, which is less singular than A-l(p)=2/p2, thus 
leading to the faster than A-1 decay. 

We describe the organization of the rest of the paper, As the identity 
(10) was already derived for the "h-function" RG in refs. 14 and 15, in 
Section 2 we derive (10) for the general decomposition case. In Section 3 
we discuss some generalizations. 

2. D E R I V A T I O N  OF G E N E R A T I N G  F U N C T I O N  IDENTITY  

Here we derive the formula (10) for the general decomposition of (3). 
We use the translation formula 

f f(O) e(~"K)dp(@)=-e (K'cK)/2 f f(O + CK) clp((~9) 

for a Gaussian measure with covariance C. Assume after n steps that 

x(J)=exp [ -  ~ Wi(O)]exp[�89 CnJ)] 
i = 1  

x fexp[-�89 An0~)] exp[(0~, A.J)] e x p [ -  v.(O~ + D.J)] DO. 

1 --1 Setting A. = zl n + 1 -}- /~n, On = On + 1 -~ q n ,  w e  obtain, after using t h e  t r a n s -  

l a t i o n  formula, 

z (J )=exp [ -  ~ Wi(O)]exp[�89 (J'A"b~IF~A"J) 
i = 1  2 

x f exp[�89 1, A.+ 10.+ 1)] expl-(~b.+ 1, A.J)] 

x e x p [ -  W,, + 1(lb. +1 + (D. + b~ 1 r.A.)J)] DO. +1 

where 

exp[ - W. + l(~b. + 1)] = f exp[�89 F .q2  l)] exp[ - v.(On+I + ~n)] O~. 

Now we renormalize. Write, defining cn+l and V.+I by 

[~.  Cn+l w.+,(~+~) = w,,+,,o~ +-y--  (~~ z ~  v.+,(~.+,) 
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so that 

mn+ l((gn+ l ~- On+ l Y ) =  mn+ l(O)--~ - Cn+ l ~ -  (0.+, +D.+,J, ~.+, 

x(On+, + D.+IJ))+ V.+,COn+t + D.+IJ) 

where we set D++t =D. +b2tF.A. .  Substituting in ~:(J) gives 

x exP{�89 [C.+b.A*F.A.-c.+~D*+~A.+ID.+~]J)} 

f l(bn~-Cn+l)(On An+IOn+I)] x e x p [ -  ~ +1, 

exp{(0.+ t, [A.--c.+IA.+~D.+~]J)} 

x exp[-- V.+ ~(0.+ 1 + D.+~J)] D0.+~ 

~+~ (J, c . +~J )  
=exp L-,-~1 Wi(0)] exp 2 

x f exp [�89 ~(0,,+,, A. +, 0.+ 1)] exp[(0. + ~, A.+ 1J)] 

x e x p [ -  V,,+ ~(O.+~ + D.+~J)l DO.+ ~ 

and we define D.+~, C.+1, b.+, ,  and A.+,  by 

D.+t =D.+b.-IF.A. ,  Do=0, 

C.+ 1 = C. + b~IA*F.A. 

-c,,+ID*+IA.+ID.+I, C0=0, 

b.+l = b .+  c.+1, bo = 1, 

A.+ L = A . - c . +  IA.+ I D,,+ I, Ao= 1, 

955 

D 1 ~ F  0 

C l  = /~0 - -  Cl FoA leo 

b l = l + c l  

A 1= 1-c lAlFo 

We solve these recursion relations later after performing the final step. 
Using the translation formula in the last integral above, we have 

I n~ 1 1 (J,[Cn+l+A*+lbn-l+lAn+lAn+l] J) ~(J)=exp - Wi(O) exp 
i = 1  2 

x f e x p [ -  �89 + l(0n + 1 '  Art +I On+ 1)] 

X exp[ -- V.+~(O.+~ + D.+I + b~+l A.~ 1A.+11J)] DO,,+ 1 
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where 

O'Carroll 

e -  Wk+l(O) ~ f e--bk(t lk ,Fkl t lk) /2 e Vk(tlk) Dtl k 

" A* t,-1 i A.+ and and we are done upon setting P n + I = C ~ + I _  .+~u.+13.+ ~ 1 
G.+I=D.+I+b~I+IA~I+IA.+I .  

Now we solve the recursion relations. For b n +1 and C. +1 we have 

b.+l = 1 +cl +c2 + " ' "  q - C n + l  ==----Zn~l+l 

C.+1 = (b k 1AkFkAk_Ck+lDk+lAk+~Dk+l) 
k = 0  

We treat the relations for A,,+I and Dn+~ as a system. Write 

A.+~ =An-c .+IA~+ID.+I  =A,,-cn+tAn+lD,~-cn+lAn+lbn lF~A. 

D. + 1 = D. + b;  ll'nA . 

or, where R~ is a 2 • 2 block operator, 

( 1 :  / 
- A " )  = (R.) R . =  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(An+, ( A . ) ,  -c , ,+lA.+lb .  Fn : -c .+lAn+l  

\ D . + I  D. \ S . J  \ b ; l l ' ,  i 0 / 

Thus, with I a 2 • 2 block identity operator, 

( A : + ' )  = 15I ( I+  Rj) ( : )  
1 /  j = 0  

and we have completed the derivation of (10). 

3. G E N E R A L I Z A T I O N S  

If we consider massive lattice regularized ultraviolet problems, for 
example, the q~4 interaction in three dimensions, in the framework of the 
block RG it is more convenient to start with an ~ lattice and use a sequence 
of averaging operations as in ref. 7 which map from L% to L k + le lattices. 
RGTs are applied until a lattice of order unity is reached. Identities similar 
to Eqs. (10) and (15) can be obtained and the remainder represents 
contributions from momentum scales roughly between 0 and unity. The 
e "~ 0 limit gives a continuum model and the formulas can be used to 
analyze the short-distance behavior of correlation functions. For the 
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6-function block RG continuum wavelets will then enter. (12'~3) In the case 
of a general decomposition a continuous space covariance with ultraviolet 
cutoff can be used as in ref. 6. 

For fermion models similar formulas to Eqs. (10) and (15) can also be 
obtained. For the block RG the RGT is formulated in terms of Grassman 
variables and decomposition formulas and properties of RG operators are 
obtained in ref. 15. The unperturbed action operator is taken to be the 
Dirac operator. The decomposition formula for the exponential block RG 
has the same structure as in Eq. (8), the difference being that the effective 
quadratic operators {P,,} are not self-adjoint. Furthermore, in contrast to 
the exponential block RG, the 6-function RG does not have uniformly 
exponentially decaying kernels for {Dn}. (~7) Thus the "orthogonality-of- 
scales" formulas are not obtained. Formulas for the effective Potential and 
Schwinger functions in some fermion models have been obtained and 
applied in ref. 18. 

For perturbations V(~A) of the free electromagnetic field on a lattice 
with action �89 OA), where c~A is the electromagnetic field 2-form as 
in ref. 8, similar formulas can be obtained where in the context of the 
block RG the scalar field averaging operators are generalized to one- and 
two-form averaging operators. 

We leave the application of the correlation function formulas for the 
case of a general decomposition to the proponents of RGs other than the 
"6-function" block field RG. 
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